These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tritium isotope effects in the reaction catalyzed by 4-hydroxyphenylpyruvate dioxygenase from pseudomonas sp. strain P.J. 874.
    Author: Rundgren M.
    Journal: Biochim Biophys Acta; 1982 May 21; 704(1):59-65. PubMed ID: 6807350.
    Abstract:
    Tritium isotope effects in the reaction catalyzed by 4-hydroxyphenylpyruvate dioxygenase (4-hydroxyphenyl-pyruvate:oxygen oxidoreductase (hydroxylating, decarboxylating), EC 1.13.11.27) from Pseudomonas sp. strain P.J. 874 were studied with 14C- and different 3H-labelled 4-hydroxyphenylpyruvate. Tritium of ring-2,6-3H2-labelled substrate was released into water in 1:2 stoichiometry to 14CO2 formation. The tritium release from ring-3,5-3H2- and side chain-3-3H1-labelled 4-hydroxyphenylpyruvate was low as compared with 14CO2 formation. The apparent tritium isotope effects were below two, as judged by comparison of 3H/14C ratios of 4-hydroxyphenylpyruvate and homogentisate. The ratios showed no dependence on oxygen concentrations between 1 and 21% in the gas phase. Thus, a tritium assay can be used to determine the activity of 4-hydroxyphenylpyruvate dioxygenase. Apparently, none of the substrate hydrogens is involved in any rate-limiting step up to the first irreversible step. enol-4-Hydroxyphenylpyruvate was excluded as the active substrate tautomer.
    [Abstract] [Full Text] [Related] [New Search]