These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of luminal and peritubular HCO3(-) concentrations and PCO2 on HCO3(-) reabsorption in rabbit proximal convoluted tubules perfused in vitro.
    Author: Sasaki S, Berry CA, Rector FC.
    Journal: J Clin Invest; 1982 Sep; 70(3):639-49. PubMed ID: 6809795.
    Abstract:
    The effect of luminal and peritubular HCO3(-) concentrations and PCO2 on HCO3(-) reabsorption was examined in rabbit proximal convoluted tubules perfused in vitro. Increasing luminal HCO3(-) concentration from 25 to 40 mM without changing either peritubular HCO3(-) concentration or PCO2, stimulated HCO3(-) reabsorption by 41%. When luminal HCO3(-) concentration was constant at 40 mM and peritubular HCO3(-) concentration was increased from 25 to 40 mM without changing peritubular PCO2, a 45% reduction in HCO3(-) reabsorption was observed. This inhibitory effect of increasing peritubular HCO3(-) concentration was reversed when peritubular pH was normalized by increasing PCO2. Passive permeability for HCO3(-) was also measured and found to be 1.09 +/- 0.17 X 10(-7) cm2 s-1. Using this value, the passive flux of HCO3(-) could be calculated. Only a small portion (less than 23%) of the observed changes in net HCO3(-) reabsorption can be explained by the passive HCO3(-) flux. We conclude that luminal and peritubular HCO3(-) concentrations after HCO3(-) reabsorption by changing the active H+ secretion rate. Analysis of these data suggest that both luminal and peritubular pH are major determinants of HCO3(-) reabsorption.
    [Abstract] [Full Text] [Related] [New Search]