These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Platelet lipoxygenase-dependent oxygen burst. Evidence for differential activation of lipoxygenase in intact and disrupted human platelets. Author: Schafer AI, Turner NA, Handin RI. Journal: Biochim Biophys Acta; 1982 Sep 14; 712(3):535-41. PubMed ID: 6812645. Abstract: The metabolism of arachidonic acid in platelets by both cyclooxygenase and lipoxygenase involves the rapid consumption of molecular oxygen. However, selective inhibition of cyclooxygenase completely abolishes the arachidonate-induced oxygen burst in intact platelets. This is in contrast to platelet lysates, in which approximately 50% of the arachidonate-induced oxygen burst remains detectable following inhibition of cyclooxygenase with acetylsalicylic acid. This lipoxygenase oxygen burst is blocked by preincubation of the platelets with ETYA, which inhibits both cyclooxygenase and lipoxygenase. In cell-free 100000 x g supernatants of platelet lysates, which contain only lipoxygenase activity, arachidonate induces an oxygen burst which is not blunted by preincubation with aspirin but is completely abolished by preincubation with ETYA. The finding of a lipoxygenase-dependent oxygen burst in platelet lysates but not in intact platelet suspensions suggests differential activation or differential availability of platelet lipoxygenase in intact and disrupted platelets. This was confirmed by a 5 min lag in the generation of [14C]HETE (the major lipoxygenase product) from [14C]arachidonic acid in intact platelets, but an almost immediate initiation of [14C]HETE production in platelet lysates. In contrast, the synthesis of [14C]thromboxane B2 (the major cyclooxygenase product) from [14C]arachidonic acid began immediately in both intact and disrupted platelet preparations and peaked within 5 min. These observations provide new insight into factors controlling platelet hydroxy acid production and help to explain the nature of the platelet oxygen burst.[Abstract] [Full Text] [Related] [New Search]