These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A reaction mechanism for aldose reductase from lens.
    Author: Doughty CC, Conrad SM.
    Journal: Biochim Biophys Acta; 1982 Nov 19; 708(3):358-64. PubMed ID: 6816290.
    Abstract:
    Sheys and Doughty, (Sheys, G.H. and Doughty, C.C. (1979) Biochim. Biophys. Acta 242, 523-531) suggested a model for Rhodotorula (yeast) aldose reductase (alditol:NADP+ 1-oxidoreductase, EC 1.1.1.21) which offered a unified explanation for changes in reversibility, reaction mechanism, and effects of multivalent anions as well as substrate activation. The present paper extends this model to lens aldose reductase, explaining its similarities to the reverse reaction in Rhodotorula in regard to its reaction mechanism, as well as multivalent anion effects of sulfate, pyrophosphate and NADPH (above 20 micro M) and also substrate activation with glyceraldehyde involving formation of an abortive complex (above 50 micro M). Activation of lens aldose reductase resulted with multivalent anions, due to increased V max and apparent Km values with increasing concentration of multivalent anions. The lens enzyme mechanism is similar to the reverse reaction mechanism for the Rhodotorula enzyme, being partially random in character, based on NADP+ inhibitor studies presented here. The binding of NADPH appears to occur at a basic center containing arginine and possibly histidine. Evidence of the participation of these residues at the active center is based on time-course inactivation protection studies using reagents specific for these residues.
    [Abstract] [Full Text] [Related] [New Search]