These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationship between state of aggregation and catalytic activity for cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase.
    Author: Dean WL, Gray RD.
    Journal: J Biol Chem; 1982 Dec 25; 257(24):14679-85. PubMed ID: 6816797.
    Abstract:
    The detergent 1-O-n-octyl-beta-D-glucopyranoside (octylglucoside) was found to replace the phospholipid requirement in the demethylation of benzphetamine by cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase purified from phenobarbital-treated rabbit liver. At low enzyme concentration (0.1 microM) in the absence of glycerol and phosphate, the maximum rate of benzphetamine-specific NADPH oxidation was approximately 35% of that observed in the presence of dilauroylglyceryl-3-phosphoryl choline. At higher enzyme concentration (2.5 microM) and in the presence of 0.15 M phosphate, 20% glycerol, octylglucoside was as effective as phospholipid in stimulating the production of formaldehyde from benzphetamine. The detergent concentration required for maximal enzymatic activity was 2.5-4.0 g/liter, depending on the cytochrome preparation used. At higher octylglucoside concentrations (5-7 g/liter), activity decreased to zero, although neither enzyme appeared to be irreversibly denatured at these detergent concentrations. Sedimentation equilibrium experiments with P-450LM2 alone or in the presence of equimolar reductase showed that increasing octylglucoside levels promoted disaggregation of the cytochrome. Pentamers and hexamers predominated at detergent concentrations where maximal activity was observed, while higher levels of detergent where activity was absent produced cytochrome dimers and, ultimately, monomers. The reductase was monomeric at detergent levels between at least 3 and 7 g/liter. Moreover, both gel filtration and sedimentation equilibrium experiments demonstrated that a stable complex between P-450LM2 and its reductase was not formed at octylglucoside concentrations where high activity was evident. These results are consistent with a model of P-450/reductase interaction in which functional aggregates of three to six cytochrome polypeptides move laterally in the microsomal membrane and interact with the reductase by random collision.
    [Abstract] [Full Text] [Related] [New Search]