These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of charge on the renal distribution of ferritin.
    Author: Cohen S, Vernier RL, Michael AF.
    Journal: Am J Pathol; 1983 Feb; 110(2):170-81. PubMed ID: 6824064.
    Abstract:
    The effect of charge on the tissue distribution of ferritin was evaluated in rats following intravenous administration of 3 monomeric species preparatively separated by molecular sieve chromatography from aggregated ferritin and having the same molecular weight but differing only in electrostatic charge: native ferritin, with a isoelectric point (pI) of 4.5 (NF); cationized ferritin, with a pI of 6.4-7.4 (CF 7.0); and cationized ferritin, with a pI of 8.25-8.75 (CF 8.5). At varying time intervals (30 minutes to 72 hours) after the administration of these ferritins in a dose of 10 mg/100 g, the levels in the blood were determined, the tissue (kidney, liver, spleen) distribution semiquantitatively evaluated by immunofluorescence (IF), and electron microscopic examination (EM) of the kidney carried out. The following results were obtained: 1) The plasma levels of CF (8.5) and CF (7.0) were significantly higher than NF after 6 hours. NF was not detected after 24 hours, whereas CF continued to circulate at 72 hours. 2) There was a striking decrease in the uptake of CF (7.0) and CF (8.5), when compared with NF, by Kupffer cells and splenic phagocytes in the red pulp at all time periods. 3) In the glomerulus, NF was found primarily in the mesangium and gradually disappeared over a period of 72 hours, whereas CF was present in greater amounts and persisted for longer periods of time in the mesangium and in the peripheral capillary wall. By electron microscopy, CF (8.5) could be seen in th lamina rara and within the mesangium in small aggregates aligned parallel to mesangial cell processes, whereas NF and CF (7.0) were distributed homogeneously throughout the mesangial matrix. 4) NF, but not CF, was also observed surrounding blood vessels and in interstitial phagocytes. These in vivo studies demonstrate that the electrostatic charge of ferritin affects its uptake in vivo by components of the mononuclear phagocytic system (MPS). The persistence and distribution of CF in glomeruli is a consequence of higher blood levels associated with impaired phagocytic uptake as well as charge-related binding to sites within the glomeruli.
    [Abstract] [Full Text] [Related] [New Search]