These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coupled sodium-chloride transport by rabbit ileal brush-border membrane vesicles.
    Author: Fan CC, Faust RG, Powell DW.
    Journal: Am J Physiol; 1983 Apr; 244(4):G375-85. PubMed ID: 6837744.
    Abstract:
    Uptake of Na and Cl into brush-border membrane vesicles isolated from rabbit ileal epithelial cells was investigated with a rapid filtration technique using 22Na and 36Cl as tracers. The rank order of anion dependence for Na uptake in the absence of anion gradients was SCN greater than NO3 greater than gluconate. The sequence of cation specificity for Cl uptake was Na congruent to Li greater than K greater than choline. The transport of Na and Cl were both inhibited by harmaline, furosemide, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, and 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid. Carrier mediation of Cl-stimulated Na transport was suggested by the competition for 22Na uptake with increasing concentrations of unlabeled Na in the presence of Cl but not when gluconate was the counterion. Chloride-dependent Na uptake had an apparent Km of 4.5 mM and a Vmax of 20 nmol . mg prot-1 . 15 s-1. Na-H exchange and Cl-OH (or HCO3) exchange were also demonstrated in these vesicles. These findings confirm the presence of an electrically neutral carrier-mediated, Na-Cl-coupled transport process in the apical cell membrane of rabbit ileal epithelial cells. The nature of the coupling of Na to Cl transport, i.e., NaCl symport or a process that combines Na-H antiport with Cl-OH (or HCO3) antiport, remains to be determined.
    [Abstract] [Full Text] [Related] [New Search]