These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A role for basolateral anion exchange in active jejunal absorption of HCO-3. Author: White JF, Imon MA. Journal: Am J Physiol; 1983 Apr; 244(4):G397-405. PubMed ID: 6837745. Abstract: Isolated short-circuited segments of jejunum from Amphiuma absorbed HCO-3 at a rate determined by the anion composition of the bathing media. The rate of HCO-3 absorption (JHCO-3) measured by pH-stat was high when the major anion was Cl-, Br-, I-, or SO2-(4) but was lower when gluconate or benzene sulfonate (SO-3) was the anion. The disulfonic stilbenes SITS, DIDS, and DNDS at 1 mM reduced JHCO-3 and short-circuit current when added to the serosal bathing medium. Inhibition by SITS was comparable whether Cl-, Br-, or SO2-(4) was the major anion, and SITS produced a small inhibition of JHCO-3 in gluconate-based media and no effect in benzene SO3-based media. Under conditions in which tissue conductance was low SITS lowered tissue conductance further. In Cl- media SITS reduced short-circuit current consistent with inhibition of Cl- absorption as well as HCO-3 absorption. Inhibition of the Cl- current by DIDS was not reversed by washout, although the inhibition of JHCO-3 was reversed. The rate of HCO-3 absorption in gluconate media could be increased by serosal addition of Cl-, Br-, or I-. It is concluded that the process that results in net jejunal HCO-3 absorption entails anion-HCO-3 exchange at the basolateral membrane and is distinct from the basolateral Cl(-)-HCO-3 exchange process involved in Cl- absorption.[Abstract] [Full Text] [Related] [New Search]