These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments. Author: Dencher NA, Kohl KD, Heyn MP. Journal: Biochemistry; 1983 Mar 15; 22(6):1323-34. PubMed ID: 6838856. Abstract: Spectral changes of bacteriorhodopsin (BR) reflecting its photochemical cycle and light-dark adaptation were monitored in order to study the effect of protein-protein and protein-lipid interactions on these reactions. For this purpose, the light-driven proton pump BR was reconstituted with various lipids, i.e., dimyristoyl- and dipalmitoyl-phosphatidylcholine, soybean phospholipids, and diphytanoyllecithin. In these vesicle systems, BR is monomeric above the lipid phase transition and above molar lipid to BR ratios of about 80. Well below the phase transition, BR is aggregated in a hexagonal lattice as in the purple membrane. This allows, on the one hand, comparison of monomeric and aggregated BR in the respective vesicle systems and, on the other hand, comparison of reconstituted BR with BR in the native purple membrane. The photoreaction cycle of all-trans-BR accompanying proton translocation proceeds via the same intermediates in the monomeric and aggregated pigment. Furthermore, both the rate and the activation energy for the decay of the cycle intermediate M-410 are independent of the aggregation state. From the results, we conclude that the functional unit responsible for BR's photocycle is the monomer itself. This is in accordance with previous observations that BR monomers are able to translocate protons during illumination [Drencher, N. A., & Heyn, M.P. (1979) FEBS Lett. 108, 307-310]. The light-dark adaptation reaction, however, is affected by BR's aggregation state. In the case of the monomer, the extent of light adaptation, i.e., the fraction of BR molecules containing 13-cis-retinal as chromophore which is converted by illumination to the respective pigment with the all-trans isomer, is reduced by 50% or more, and the rate of dark adaptation is slowed down about 2.5 times. For these properties too, the monomer is functional, but with a reduced efficiency. This indicates regulatory control by neighboring BR molecules. The rate of the photocycle as well as of dark adaptation is strongly affected by the chemical nature of the lipids used for reconstitution but not by the physical state of the lipid phase.[Abstract] [Full Text] [Related] [New Search]