These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Firm structural associations between migratory pigment granules and microtubules in crayfish retinula cells.
    Author: Frixione E.
    Journal: J Cell Biol; 1983 May; 96(5):1258-65. PubMed ID: 6841448.
    Abstract:
    The morphology of associations between mobile pigment granules and microtubules of the crayfish retinula cells was examined with transmission electron microscopy. Many pigment granules were found associated with microtubules through linkages of fuzzy appearance in thin sections. The linkages were revealed as discrete strands of variable shape in rotary-shadowed replicas of freeze-fractured and deep-etched specimens. The only feature of constant morphology among these connections consisted of 2-4-nm filaments projecting laterally from the microtubules. The firmness of the pigment granule-microtubule associations was judged by their ability to hold up during cell disruption procedures of increasing disaggregation effects in a low-Ca++ stabilization buffer. The results of these tests were inspected with scanning electron microscopy and with transmission electron microscopy of negatively stained preparations. Numerous pigment granules remained associated with a stable microtubule framework after the plasma membrane had been stripped away. Moreover, granule-microtubule attachments survived breakdown of this framework into free fascicles of microtubules. The pigment granules were associated with the free microtubules either individually or as clusters entangled in a fibrous material interwoven with 10-nm filaments. These findings attest that many pigment granules are bound to microtubules through linkages that constitute effective attachments. Further, it is demonstrated that a highly cohesive substance associates the pigment granules with one another. These conclusions are discussed in terms of a pigment transport mechanism in which a network of interconnected granules would establish firm transient interactions with a supporting skeleton of microtubules.
    [Abstract] [Full Text] [Related] [New Search]