These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of thermodynamic nonideality in kinetic studies. Author: Nichol LW, Sculley MJ, Ward LD, Winzor DJ. Journal: Arch Biochem Biophys; 1983 Apr 15; 222(2):574-81. PubMed ID: 6847203. Abstract: Experimental evidence is presented for concentration dependence of the pseudo-first-order rate constant describing the rate of inversion of sucrose by 2 M HCl; and also of the increase in maximal velocity for the catalytic reduction of pyruvate by lactate dehydrogenase that results from addition of the inert macromolecular solutes bovine serum albumin, ovalbumin, and Dextran T70. These somewhat unusual and seemingly diverse observations are examined in terms of a theory formulated on the basis of two equilibrium reactions, the first describing complex formation between two reactants, and the second isomerization of that complex to an activated state prior to product formation. This formulation permits consideration of activity coefficient ratios relevant to the equilibria and the expression of these ratios as power series in total solution composition. Quantitative assessment of the experimental results is made possible in these terms by estimating the magnitudes of the constant coefficients of the virial expansions as excluded volumes. It is concluded that the result observed in the sucrose inversion study finds rational explanation in thermodynamic nonideality factors governing the overall equilibrium between the reactants and the activated complex of sucrose and hydronium ion. For the enzyme-catalyzed reaction the same general equation applies but particular attention is given to the simplified form that is relevant to high substrate concentrations, where, in the absence of inert compounds, the conventional maximal velocity is approached. In this region an increase in velocity observed upon addition of an inert macromolecular component may be considered explicitly in terms of excluded volume effects related to a shape change in the isomerization between enzyme-substrate complex and its activated state.[Abstract] [Full Text] [Related] [New Search]