These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Irreversible binding of acrylonitrile to nucleic acids. Author: Peter H, Appel KE, Berg R, Bolt HM. Journal: Xenobiotica; 1983 Jan; 13(1):19-25. PubMed ID: 6858196. Abstract: 1. [2,3-14C]Acrylonitrile was incubated with rat-liver microsomes, NADPH and either DNA, RNA or bovine serum albumin. Irreversible binding occurred to the macromolecular targets. Binding was lower when incubations were performed without microsomes. 2. Most of the 14C bound to DNA, RNA or polynucleotides (poly-A, poly-C, poly-G, poly-U) after incubation of [2,3-14C]acrylonitrile with rat-liver microsomes and 'conventional' re-isolation of the nucleic acids was removed from the macromolecular target when subsequently chromatographed on hydroxyapatite. 3. Radioactivity attached to DNA after prolonged non-enzymic incubations with [2,3-14C]acrylonitrile was also removed from the DNA by chromatography on hydroxyapatite. 4. When [2,3-14C]acrylonitrile was administered to rats (i.p.), incorporation of 14C into the natural bases of hepatic RNA was observed. In contrast with previous experiments with [1,2-14C]vinyl chloride, no radioactive [1-N6]etheno-adenine could be detected in RNA. 5. After administration of [2,3-14C]acrylonitrile to rats, hepatic DNA was isolated and hydrolysed by a modified enzymic procedure. Chromatography on PEI-cellulose showed two 14C peaks which did not co-chromatograph with any known standard. The amount of 14C in these presumed alkylation products was too low to allow chemical identification. 6. It is concluded that acrylonitrile, either itself or its metabolites, can alkylate nucleic acids. However, the extent of irreversible nucleic-acid binding is quantitatively much less than that observed with vinyl halides.[Abstract] [Full Text] [Related] [New Search]