These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Complement pores in erythrocyte membranes. Analysis of C8/C9 binding required for functional membrane damage.
    Author: Sims PJ.
    Journal: Biochim Biophys Acta; 1983 Aug 10; 732(3):541-52. PubMed ID: 6871214.
    Abstract:
    The number of membrane-bound terminal complement proteins (C5b-9) required to generate a functional pore in the human erythrocyte membrane ghost has been determined. Resealed erythrocyte ghost membranes (ghosts) were treated with human complement proteins C5b6, C7, 131I-C8, and 125I-C9 under non-lytic conditions. Following C5b-9 assembly, sucrose-permeant ghosts were separated from C5b-9 ghosts that remained impermeant to sucrose by centrifugation over density barriers formed of 43% (w/v) sucrose. Analysis of 131I-C8 and 125I-C9 bound to sucrose-permeant and sucrose-impermeant subpopulations of C5b-9 ghosts revealed: 1. Sucrose-permeant C5b-9 ghosts show increased uptake of both 131I-C8 and 125I-C9 as compared to ghosts that remain impermeant to sucrose. Ghosts with less than 300 molecules 131I-C8 bound remain impermeant to sucrose, irrespective of the total C9 input, or, the multiplicity of C9 uptake by membrane C5b-8. 2. In the presence of excess 125I-C9, the ratio of 125I-C9/131I-C8 bound to membrane C5b67 is 3.2 +/- 0.8 (mean +/- 2 S.D.), suggesting an average stoichiometry of 3 C9 per C5b-8. Under these conditions, the ratio of 125I-C9/131I-C8 bound to sucrose-permeant ghosts (3.3 +/- 0.7) does not significantly differ from the ratio bound to sucrose-impermeant ghosts (2.9 +/- 0.6). 3. With limiting C9 input, the threshold of total C5b-8 uptake required for sucrose permeability increases significantly above 300 per cell when the ratio of bound 125I-C9/131I-C8 is decreased below unity. In the complete absence of C9, 11 700 C5b-8 complexes are bound to sucrose-permeant ghosts. It is concluded that more than 300 C5b-9 complexes must bind to the human erythrocyte to form a sucrose-permeant lesion. Although the binding of one C9 per C5b-8 is critical to the pore-forming activity of these proteins, the binding of additional molecules of C9 to each complex (C9/C8 greater than 1) does not significantly alter the threshold of total C5b-9 uptake required for lesion formation.
    [Abstract] [Full Text] [Related] [New Search]