These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diminished sympathetic nervous system activity in genetically obese (ob/ob) mouse.
    Author: Young JB, Landsberg L.
    Journal: Am J Physiol; 1983 Aug; 245(2):E148-54. PubMed ID: 6881329.
    Abstract:
    The genetically obese (ob/ob) mouse exhibits defective thermoregulatory responses to cold exposure. Pathophysiological explanations for this phenomenon have focused on abnormalities in intracellular metabolism or insensitivity of peripheral tissues to the thermogenic effects of catecholamines. Because the sympathetic nervous system (SNS) is subject to feedback regulation, a peripheral impairment in thermogenesis should be associated with a compensatory increase in SNS activity. To examine SNS activity in the ob/ob mouse, norepinephrine (NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of ob/ob and lean mice. The results from studies utilizing radiolabeled NE or inhibition of NE biosynthesis with alpha-methyl-p-tyrosine to measure NE turnover demonstrated reductions in SNS activity of 33-56% in heart and of 45-73% in IBAT in ob/ob mice at ambient temperature (22 degrees C) compared with measurements in lean controls. During cold exposure (4 degrees C) NE turnover increased in heart and IBAT to a similar extent in both ob/ob and lean mice, but NE turnover rates in heart, and probably in IBAT as well, remained lower in the obese mice than in the lean despite the gradual development of hypothermia in the ob/ob mice during this period. Administration of naltrexone, a long-acting opiate antagonist, failed to reverse the suppression of SNS activity observed in the ob/ob mice. These data indicate that diminished SNS activity in ob/ob mice may be an additional factor contributing to the defective thermogenesis characteristic of these animals.
    [Abstract] [Full Text] [Related] [New Search]