These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging.
    Author: Nash GB, Meiselman HJ.
    Journal: Biophys J; 1983 Jul; 43(1):63-73. PubMed ID: 6882863.
    Abstract:
    To assess the influence of intracellular hemoglobin concentration on red cell viscoelasticity and to better understand changes related to in vivo aging, membrane shear elastic moduli (mu) and time constants for cell shape recovery (tc) were measured for age-fractionated human erythrocytes and derived ghosts. Time constants were also measured for osmotically shrunk cell fractions. Young and old cells had equal mu, but tc was longer for older cells. When young cells were shrunk to equal the volume (and hence hemoglobin concentration and internal viscosity) of old cells, tc increased only slightly. Thus membrane viscosity (eta = mu . tc) increases during aging, regardless of increased internal viscosity. However, further shrinkage of young cells, or slight shrinkage of old cells, caused a sharp increase in tc. Because this increased tc is not explainable by elevated internal viscosity, eta increased, possibly due to a concentration-dependent hemoglobin-membrane interaction. Ghosts had a greater mu than intact cells, with proportionally faster tc; their membrane viscosity was therefore similar to intact cells. However, the ratio of old/young membrane viscosity was less for ghosts than for intact cells, indicating that differences between young and old cell eta may be partly explained by altered hemoglobin-membrane interaction during aging. It is postulated that these changes in viscoelastic behavior influence in vivo survival of senescent cells.
    [Abstract] [Full Text] [Related] [New Search]