These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monosynaptic and disynaptic activation of pyriform cortex neurons by synchronous lateral olfactory tract volleys in the rabbit.
    Author: Satou M, Mori K, Tazawa Y, Takagi SF.
    Journal: Exp Neurol; 1983 Sep; 81(3):571-85. PubMed ID: 6884469.
    Abstract:
    To elucidate the organization of synaptic inputs to pyriform cortex neurons, intracellular and extracellular responses of single units were analyzed in urethane-anesthetized rabbits. The lateral olfactory tract (LOT) or the olfactory bulb (OB) was electrically stimulated. Intracellular recordings revealed two types of cells (type I and type II cells), according to the types of EPSP evoked by the LOT or OB shock. The EPSP in the type I cells had shorter latencies (0.0 to 0.9 ms) from the onset of the component 2 (C2) wave of the field potential (which signals the onset of the synaptic depolarization of the apical dendrites of the pyramidal cells in the PC), and that in the type II cells had longer latencies (1.0 to 6.0 ms). A conditioning LOT or OB shock did not suppress the testing EPSP in the type I cells, whereas the conditioning stimulation greatly suppressed the testing EPSP in most of the type II cells. Extracellular recordings from units responding synaptically to the LOT or OB shock revealed a group of units which had short latencies (0.7 to 1.9 ms) of spike discharges. Those units, which were likely to be the same cells as the type I cells, are believed to mediate excitatory synaptic inputs to the type II cells. On the basis of these results, we concluded that type I cells are monosynaptically activated by LOT volleys, whereas type II cells are activated di- or polysynaptically by way of a relay from type I cells. The type I cells were recorded in both the superficial and the deep parts of the pyriform cortex, although they were recorded more frequently in the superficial part. On the other hand, most of the type II cells were recorded in the deep part of the PC. These results support and extend the previous model, in which the monosynaptically activated superficial pyramidal cells give rise to excitatory inputs to other pyramidal cells and neurons in deep layers.
    [Abstract] [Full Text] [Related] [New Search]