These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Renal function and sympathetic activity during mental stress in normotensive and spontaneously hypertensive rats. Author: Lundin S, Thorén P. Journal: Acta Physiol Scand; 1982 May; 115(1):115-24. PubMed ID: 6890300. Abstract: The aim of the present study was to explore the role of the renal sympathetic nerves in the urinary sodium excretion response to 'mental stress' in spontaneously hypertensive rats (SHR). In conscious male SHR and male Wistar Kyoto rats (WKY) urinary sodium excretion and renal function were measured both during 'rest' and during a 20 min period of 'mental stress'. Experiments were also performed on renal denervated rats. In addition, renal sympathetic activity was measured in a separate group of rats. Urinary sodium excretion, similar at rest in SHR and WKY, decreased significantly more during the stress period in SHR (-64 +/- 5%) than in WKY (-34 +/- 7%), despite a greater arterial pressure increase in SHR. Renal sympathetic nerve activity which already at rest was higher in SHR than in WKY, also increased much more in SHR during stress than in WKY. The more intense renal sympathetic activation during stress may explain the greater reduction in urinary sodium excretion in SHR, because renal denervation almost abolished this latter response. Thus, during 'mental stress' the increased renal sympathetic activity reduces urinary sodium excretion in SHR despite the pressure rise, perhaps explaining why renal denervation delays the rise in arterial pressure in young SHR. The tachycardia response in SHR gradually subsided towards the end of the stress period, while renal sympathetic activity remained elevated. This indicates that neurogenic heart rate increases if anything underestimate the extent of sympathetic activation to e.g. the renal and splanchnic regions during increased alertness.[Abstract] [Full Text] [Related] [New Search]