These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of age on the conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 by kidney of rat.
    Author: Armbrecht HJ, Zenser TV, Davis BB.
    Journal: J Clin Invest; 1980 Nov; 66(5):1118-23. PubMed ID: 6893596.
    Abstract:
    The decreased absorption of calcium by the small intestine of the adult may reflect changes in vitamin D metabolism with age. The purpose of this study was to compare the capacity of young (1.5 mo of age) and adult (12 mo of age) vitamin D-deficient rats to convert 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D, the physiologically active form of vitamin D. Young rats responded to an oral dose of 25-hydroxyvitamin D3 with significantly increased intestinal absorption of calcium and a three-fold increase in the intestinal content of vitamin D-stimulated calcium-binding protein. Adult rats showed no significant increase in these parameters. The conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 was measured in the whole animal by administering a dose of tritiated 25-hydroxyvitamin D3 and determining the appearance of tritiated metabolites in plasma and small intestine. In the adult rat, only 2.1 +/- 0.6% of the plasma radioactivity was in the form of 1,25-dihydroxyvitamin D3 after 24 h compared with 20.8 +/- 3.0% in the young. The conversion of tritiated 25-hydroxyvitamin D3 to its products was also measured directly in isolated slices of renal cortex. 1,25-Dihydroxyvitamin D3 production by adult renal slices was found to be less than one-tenth that of slices from the young. These results indicate that there is a marked decrease in the capacity of the vitamin D-deficient adult rat to convert 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3. This is probably due to the decreased capacity of the adult kidney to 1-hydroxylate 25-hydroxyvitamin D3. These studies also demonstrate the usefulness of renal slices in measuring changes in the renal conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 in the mammal.
    [Abstract] [Full Text] [Related] [New Search]