These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The molecular nature of 1,25-(OH)2-D3-induced calcium-binding protein biosynthesis in the rat.
    Author: Bronner F, Buckley M.
    Journal: Adv Exp Med Biol; 1982; 151():355-60. PubMed ID: 6897481.
    Abstract:
    Exogenous 1,25-(OH)2-D3, administered to vitamin D-replete animals on a high calcium diet, induces biosynthesis of the duodenal, cytosolic calcium-binding protein (CaBP) in less than 2 h. This process can be blocked by simultaneously administered cycloheximide, but not by actinomycin D. In vitamin D-replete animals on a low Ca diet, on the other hand, 1,25-(OH)2-D3 administration leads to new CaBP synthesis only after about 7 h; this process can be blocked by actinomycin D. In vitamin D-deficient animals on a high calcium diet who have no CaBP, treatment with 1,25-(OH)2-D3 induces CaBP formation in congruent to 8 h; this process is known to be blocked by actinomycin D. Thus in D-replete animals on a low calcium diet and in D-deficient animals, CaBP biosynthesis proceeds by a transcriptional route, whereas in D-replete animals on a high calcium diet the rapid response appears to be posttranscriptional. This finding points to the possibility of a more rapid regulatory action of vitamin D than previously reported and how vitamin D might function in the D-replete state.
    [Abstract] [Full Text] [Related] [New Search]