These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Decreased pulmonary transvascular fluid filtration in awake newborn lambs after intravenous furosemide. Author: Bland RD, McMillan DD, Bressack MA. Journal: J Clin Invest; 1978 Sep; 62(3):601-9. PubMed ID: 690187. Abstract: We studied the effect of furosemide on pulmonary transvascular filtration of fluid and microvascular permeability to plasma proteins by measuring steady-state lung lymph flow and protein flow, pulmonary arterial and left atrial pressures in nine 1-wk-old unanesthetized lambs before and after rapid intravenous infusion of furosemide, 1 mg/kg in 10 experiments and 8 mg/kg in 5 experiments. With rapid diuresis induced by furosemide (an eightfold increase in urine flow), lung vascular pressures decreased, protein concentrations of lymph and plasma increased, and there was a consistent decrease in lymph flow and lymph protein flow, more pronounced after the larger dose. Five additional lambs received 8 mg/kg of furosemide intravenously in the presence of saline-induced pulmonary edema; in these experiments, the decrease in vascular pressures, increase in transvascular protein gradient, and decrease in lymph flow were greater than in lambs without pulmonary edema. These findings suggest that furosemide decreases transvascular filtration of fluid in the lung by diminishing the transvascular hydraulic pressure gradient and increasing the transvascular gradient for protein osmotic pressure. In five acute experiments on anesthetized lambs with kidneys removed, 8 mg/kg of intravenous furosemide decreased lymph flow one-half as much as it did in the presence of kidneys, with no change in lung vascular pressures or protein concentrations. The results of experiments in lambs without kidneys are consistent with a reduction in the vascular surface area for exchange of fluid and protein in the lung.[Abstract] [Full Text] [Related] [New Search]