These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: New late gene, dar, involved in the replication of bacteriophage T4 DNA. III. DNA replicative intermediates of T4 dar and a gene 59 mutant suppressed by dar.
    Author: Wu JR, Yeh YC.
    Journal: J Virol; 1978 Jul; 27(1):103-17. PubMed ID: 691106.
    Abstract:
    A mutation in the dar gene of phage T4 restored the arrested DNA synthesis caused by the gene 59 mutation. We have studied the DNA replicative intermediates in cells infected with a dar mutant and a dar-amC5 (gene 59) mutant by velocity sedimentation in neutral and alkaline sucrose gradients. In T4 dar-infected cells, compared to the wild type, three kinds of abnormalities were observed in DNA replication (i) There were unusually rapidly sedimenting intermediates (800S). (ii) When centrifuged in alkaline gradients, there was less single-stranded DNA exceeding 1 phage unit. (iii) The rate of repair of DNA intermediates was slower. It has been proposed by others that the 200S DNA replicative intermediates are required for DNA packaging, but our results showed that the 800S DNA of dar does not have to be converted into the 200S form to undergo conversion to mature viral DNA. Therefore, 200S DNA may not be an obligatory intermediate for mature viral DNA formation. In amC5 (gene 59)-infected cells, the DNA was completely converted 2 to 3 min after intiation of replication to the biologically inactive 63S DNA, and DNA synthesis was concomitantly arrested. However, in dar-am-C5 (gene 59)-infected cells, the formation of abnormal 63S DNA did not occur and 200S DNA appeared instead. An endonucleolytic activity, normally associated with the cell membrane and capable of making double-stranded cuts, was found in the cytoplasm of T4 dar-infected cells. Because the total activity of this endonuclease is the same for both wild-type T4D and the dar mutant, it seems unlikely that the dar protein has endonucleolytic activity itself. However, the finding does explain the abnormal sedimentation of dar DNA intermediates (800S) as well as the proposed suppression mechanism of the gene 59 mutation.
    [Abstract] [Full Text] [Related] [New Search]