These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetic studies of the cooperative binding of subfragment 1 to regulated actin.
    Author: Trybus KM, Taylor EW.
    Journal: Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7209-13. PubMed ID: 6938966.
    Abstract:
    The transient-state kinetics of binding of myosin subfragment 1 (SF-1) to regulated actin in the presence and absence of Ca2+ were investigated. The binding of SF-1 to pure actin, to actin-tropomyosin (actin-TM), or to actin-tropomyosin-troponin (actin-TM-TN) in the presence of Ca2+ was kinetically the same. In each case, the light-scattering transients were biphasic, suggesting a two-step binding of SF-1 to actin. Binding of SF-1 to regulated actin in the absence of Ca2+ was different from binding in its presence and also varied depending on whether SF-1 or regulated actin was in excess. The kinetic results in the absence of CA2+ are explained by a cooperative binding model, in which the initial binding of SF-1 molecules to open (active) actin sites increases the number of open sites. TN-I labeled with the fluorophore 4-(N-iodoacetoxyethyl-N-methyl)-7-nitrobenz-2-oxa-1,3 diazole (TN*) was used to probe the state of the actin-TM-TN complex. Binding of SF-1 or CA2+ to regulated actin (in the absence of Ca2+) decreased the fluorescence of actin-TM-TN* by 30%, suggesting that binding of SF-1 or CA2+ induces a similar change in state. The change in fluorescence of TN* was also used to measure the rate of the transition from the active to the relaxed state in the absence of CA2+, which was 430 sec-1 at 4 degrees C in 0.1 M KCl. The lag prior to association of SF-1 with regulated actin (in the absence of Ca2+) was abolished when three SF-1 molecules were prebound per seven G-actin monomers. Similarly, a titration of actin-TM-TN* (in the absence of Ca2+) with SF-1 or SF-1-ADP showed that most actin sites are open, as measured by the fluorescence change, when the occupancy of actin-TM-TN* by SF-1-ADP or SF-1 is approximately 50%. The evidence shows that partial occupancy of a block of G-actin sites (possibly seven) by SF-1 or SF-1-ADP stabilizes the open (active) conformation.
    [Abstract] [Full Text] [Related] [New Search]