These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Author: Bishop PE, Jarlenski DM, Hetherington DR. Journal: Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7342-6. PubMed ID: 6938981. Abstract: Two Azotobacter vinelandii strains capable of growing on N2(Nif+) were isolated from two different mutant strains that lacked dinitrogenase activity (Nif-). Extracts of N2-grown cells of the two Nif+ strains lacked significant amounts of the "conventional" dinitrogenase protein subunits, as determined by two-dimensional gel electrophoresis. Instead, the extracts contained at least four new proteins that appeared to be ammonia-repressible (i.e., they were not detected in extracts of ammonia-grown cells). Based on the results of genetic backcrosses, the two Nif+ strains were shown to be pseudorevertants. Both Nif+ pseudorevertant strains were able to grow in N-free media lacking molybdenum but containing tungsten (conditions that prevented growth of the wild-type strain). The four new proteins were observed in extracts of N2-fixing cells of the Nif+ pseudorevertants regardless of whether the cells were grown in the presence of molybdenum-starved wild-type A. vinelandii cells grown under N2-fixing conditions. Under conditions of molybdenum deprivation, Nif- mutant strains of several different phenotypic classes underwent phenotypic reversal to Nif+, as shown by their ability to incorporate 15N2 and to grow in N-free media. These results provide evidence that A. vinelandii possesses an alternative N2-fixation system that is expressed during conditions of molybdenum deficiency.[Abstract] [Full Text] [Related] [New Search]