These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Changes in surface architecture during murine erythroleukemia cell differentiation as detected by lectin binding and agglutination.
    Author: Sartorelli AC.
    Journal: Biochim Biophys Acta; 1981 Nov 20; 649(1):105-12. PubMed ID: 6946835.
    Abstract:
    Cell surface alterations occurred during murine erythroleukemia cell (clone 745) differentiation that were detected by both agglutination and lectin binding. Agglutination of erythroleukemia cells was produced by wheat germ agglutinin; whereas, concanavalin A, Ricin, soybean agglutinin and fucose-binding protein were either ineffective or much less efficacious. Treatment of leukemia cells with the inducer of erythroid differentiation dimethylsulfoxide (DMSO) caused a progressive accumulation of hemoglobin-containing cells in culture and a decrease in the rate of agglutination by wheat germ agglutinin, which began at 24 h after exposure to the polar solvent, reached a nadir at 48 h, and remained essentially constant thereafter. The binding of radioactive wheat germ agglutinin by untreated control erythroleukemia cells increased with time in culture, reaching a maximum value at 48 h, and decreased progressively thereafter. Although an increase in 3H-labeled wheat germ agglutinin binding also occurred in DMSO-treated cells, the level bound was significantly lower than that observed in control cells at 24-96 h. The treatment of erythroleukemia cells with various concentrations of DMSO resulted in a decrease in the number of wheat germ agglutinin receptor sites. Other inducers of differentiation (i.e., dimethylformamide, bis(acetyl)diaminopentane) also inhibited the rate of wheat germ agglutinin-induced agglutination of erythroleukemia cells while, in contrast, the inducer tetramethylurea did not. These studies indicate that membrane changes occur during differentiation and suggest that there may be more than one mechanism involved in the initiation of maturation which ultimately leads to the common pathway of erythroid development.
    [Abstract] [Full Text] [Related] [New Search]