These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of nutrient HCO3(-) in protection of amphibian gastric mucosa. Author: Schiessel R, Merhav A, Matthews JB, Fleischer LA, Barzilai A, Silen W. Journal: Am J Physiol; 1980 Dec; 239(6):G536-42. PubMed ID: 6969549. Abstract: In in vitro bullfrog fundic mucosa inhibited with 10(-3) M metiamide and exposed to a luminal pH of 2 a progressive slow decline in potential difference (PD) and short-circuit current (Isc) and a rise in resistance (R) were observed when the nutrient solution (N) contained 18 mM HCO3(-), but these changes were restored by an N containing 50 mM HCO3(-). Substitution of PO4(3-) or N-tris(hydroxymethyl)-methyl-2-aminoethanesulfonic acid for NHO3(-) in N caused a rapid drop in PD and Isc in inhibited tissues, changes that could be prevented by 10(-4) M histamine. Ulceration occurred more frequently in metiamide-inhibited gastric sacs exposed to artificial gastric juice with an N of 18 mMHCO3(-) than with 50 mM HCO3(-), but histamine prevented ulceration in the 18 mM HCO3(-) solution. JnetCl approximated Isc under most experimental conditions in inhibited mucosa and was reduced dramatically as were both Jn leads to sCl and Js leads to nCl when HCO3(-) was removed from N. In histamine-stimulated tissues, removal of nutrient HCO3(-) did not influence Cl- transport. Our results are consistent with the proposal that HCO3(-) in N supports normal Cl- flux and that the alkaline tide of actively secreting oxyntic cells can do the same in the absence of ambient HCO3(-).[Abstract] [Full Text] [Related] [New Search]