These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arginase and sucrase potential in the fission yeast Schizosaccharomyces pombe.
    Author: Benitez T, Nurse P, Mitchison JM.
    Journal: J Cell Sci; 1980 Dec; 46():399-431. PubMed ID: 6971868.
    Abstract:
    The induction potentials of 2 enzymes, sucrase and arginase, have been measured in asynchronous and synchronous cultures of the fission yeast Schizosaccharomyces pombe. The effect on potential of inhibiting DNA synthesis is asynchronous cultures has been studied using 2 temperature-sensitive dcd mutants, one blocked in DNA replication and the other blocked in mitosis. The results show that despite inhibition of DNA synthesis, sucrase and arginase potential both continue to increase exponentially for at least a generation of growth after shifting the cdc mutants from the permissive to the restrictive temperature. A second method of inhibiting DNA synthesis, using deoxyadenosine, has also been tested. Cells treated with deoxyadenosine stop the increase in potential for a short period. However, experiments carried out using a cdc mutant together with deoxyadenosine show that the block to the increase in potential is due to a side effect of the inhibitor. It appears that increase in potential is not dependent upon continued DNA replication, and that gene dosage does not control potential in the normal cell cycle. This conclusion is supported by measurements on mutants of different cell sizes. potential is proportional to size (protein content per cell is asynchronous culture) and not to DNA content. Although potential is not gene limited in normal cells, it does appear to be so in the abnormally large cells produced by a cdc block. If cdc mutants of different sizes are grown asynchronously, and DNA synthesis is inhibited by a shift to the restrictive temperature, there is no increase in potential. This critical ratio is different for the 2 enzymes, but for each enzyme it is similar in all the mutants tested. When large cells (produced by a mutant block for 4.5 h) are shifted down in temperature, there are synchronous rounds of DNA synthesis and division and also step doublings in potential. In synchronous cultures of wild type cells, both enzymes show a stepwise doubling of potential at 0.2 of a cycle after DNA replication. In synchronous cultures of cdc mutants blocked either in replication or in mitosis, the potential steps continue with the normal timing observed in wild type cells. This shows that the steps are not dependent on the events of the DNA-division cycle but are controlled by another mechanism. Attainment of a critical size might be part of this mechanism, but tests with size mutants argue against this.
    [Abstract] [Full Text] [Related] [New Search]