These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydrolysis of GTP on elongation factor Tu.ribosome complexes promoted by 2'(3')-O-L-phenylalanyladenosine.
    Author: Campuzano S, Modolell J.
    Journal: Proc Natl Acad Sci U S A; 1980 Feb; 77(2):905-9. PubMed ID: 6987671.
    Abstract:
    In the presence of Escherichia coli ribosomes and elongation factor EF) Tu, 2'(3')-O-L-phenylalanyladenosine (AdoPhe), the 3'-terminal portion of Phe-tRNAPhe, promotes the hydrolysis of GTP. The reaction requires the presence of both 30S and 50S ribosomal subunits and of proteins L7/L12 on the 50S subunit, is unaffected by mRNA [poly(uridylic acid)], and is strongly stimulated by EF-Ts. It is proposed that the AdoPhe-dependent GTP hydrolysis, like that promoted by aminoacyl-tRNA, is mediated by a ternary complex with EF-Tu and GTP; however, in contrast to aminoacyl-tRNA, AdoPhe is probably not retained by ribosomes after GTP hydrolysis. Phe-tRNAPhe or N-acetyl-Phe-tRNAPhe bound to the ribosomal acceptor site do not inhibit, but even stimulate, GTP hydrolysis by AdoPhe.EF-Tu.GTP. Thus, the binding site for EF-Tu on the ribosome is probably available for interaction with AdoPhe.EF-Tu.GTP regardless of whether the nearby acceptor site is vacant of occupied with aminoacyl-tRNA or peptidyl-tRNA. The results demonstrate the critical role of the 3'-terminal region of aminoacyl-tRNA in activating the EF-Tu- plus ribosome-dependent GTPase.
    [Abstract] [Full Text] [Related] [New Search]