These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acceptance by Erwinia spp. of R plasmid R68.45 and its ability to mobilize the chromosome of Erwinia chrysanthemi.
    Author: Chatterjee AK.
    Journal: J Bacteriol; 1980 Apr; 142(1):111-9. PubMed ID: 6989797.
    Abstract:
    R plasmid R68.45 was transferred in broth matings from Escherichia coli to strains of Erwinia amylovora, E. carotovora subsp. atroseptica, E. chrysanthemi, and E. herbicola (Enterobacter agglomerans); the frequency of transfer ranged from 2 x 10(-8) to 5 x 10(-4) per input donor cell depending on the bacterial species. The drug resistance markers tet(+), amp(+), and kan(+) were stable in these Erwinia species. Transconjugants of Erwinia spp., but not of the wild-type parent Erwinia strains, acquired levels of antibiotic resistance (tetracycline, 50 mug/ml; ampicillin, 200 mug/ml; kanamycin 200 mug/ml) similar to those of the donor R68.45-bearing strain of Escherichia coli. Erwinia transconjugants (with one exception of E. carotovora subsp. atroseptica) were donors of the antibiotic resistance markers; the frequency of transfer was consistently higher with an E. coli strain than with Erwinia spp. as recipients, and when matings were done on a solid surface (membranes) rather than in liquid. Transfer of chromosomal markers ade(+), gal(+), gtu(+) (utilization of galacturonate), his(+), leu(+), lys(+), thr(+), and trp(+) occurred in crosses between E. chrysanthemi strains harboring R68.45 and appropriate recipient strains; the frequency of transfer ranged from 9.0 x 10(-8) to 2.0 x 10(-6) depending on the selective marker. Analysis of the coinheritance of unselected markers among various classes of recombinants revealed linkage between thr-leu-lys-ade and between trp and his, thus confirming earlier findings with the Hfr-type donor cells. Since R68.45 mobilized an array of chromosomal markers in the wild-type as well as genetically marked strains of E. chrysanthemi, the system, used in conjunction with the existing Hfr strains, should provide a useful tool to study the genetics of plant pathogenicity of this bacterial species. In contrast to E. chrysanthemi, R68.45 did not mobilize chromosomal markers ilv(+), his(+), rbs(+), ser(+), and thr(+) in E. amylovora EA178.
    [Abstract] [Full Text] [Related] [New Search]