These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: REgulation of insulin binding to isolated hepatocytes: correction for bound hormone fragments linearizes Scatchard plots.
    Author: Donner DB.
    Journal: Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3176-80. PubMed ID: 6997871.
    Abstract:
    Fragments of 125I-labeled insulin (125I-insulin) are rapidly produced after the initial cell binding process. After association of 125I-insulin with hepatocytes, hormone fragments remain bound to cells. At 23 degrees C, approximately 20% of the label bound at steady state was soluble in trichloroacetic acid. Correction of saturation experiments for the presence of bound trichloroacetic acid-soluble insulin fragments decreased the number and increased the affinity of 125I-insulin-binding sites. Label extracted from cell pellets recovered from saturation experiments was characterized by gel filtration; 59%, 55%, 40%, and 36% of the bound label was from intact hormone after recovery from incubation mixtures containing 0.18, 0.60, 4.6, and 7.5 nM applied 125I-insulin, respectively. At high applied 125I-insulin concentrations, the hormone predominantly interacted with lower affinity degradation systems. When binding data were corrected to assay for undegraded 125I-insulin only, curvilinear Scatchard plots were linearized. The insulin receptor is therefore not composed of heterogeneous or negatively cooperative sites. It is necessary to correct for retained fragments of 125I-insulin in order to define mechanisms through which hormone binding and cellular response may be regulated.
    [Abstract] [Full Text] [Related] [New Search]