These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physicochemical properties and interactions of Escherichia coli ribonucleic acid polymerase holoenzyme, core enzyme, subunits, and subassembly alpha 2 beta. Author: Levine BJ, Orphanos PD, Fischmann BS, Beychok S. Journal: Biochemistry; 1980 Oct 14; 19(21):4808-14. PubMed ID: 7000184. Abstract: We have investigated several physicochemical properties of Escherichia coli DNA-dependent RNa polymerase, its constituent subunits alpha, beta, beta', and sigma, and the subassembly alpha 2 beta. These included ultraviolet (UV) absorption, isoelectric points, sulfhydryl content, extinction coefficients, and circular dichroism (CD). Among the most notable results is the observation, based on CD measurements, that the sigma subunit, free and combined in holoenzyme, is a highly structured protein with approximately 75% of its residues folded in alpha-helical conformation and little or no detectable beta sheet. No secondary structure changes in either sigma or core accompany formation of holoenzyme. In contrast to the conformational independence of the subunits in assembly of holoenzyme, the protein and its components exhibit conformational flexibility as glycerol concentration is varied and in their interaction with DNA. The effect of glycerol on the conformation of sigma, core, and holoenzyme was monitored by circular dichroism measurements. In the far-ultraviolet, the residue ellipticity at 220 nm ([theta]220) increased approximately 15% from 0 to 10% glycerol for both core and holoenzyme. In the near-ultraviolet, the residue ellipticity at a peak near 280 nm also varied with glycerol concentration, decreasing in intensity by about 50% with holoenzyme, when glycerol was raised from 5 to 10%, then increasing at still higher glycerol contents. Electrophoretic and molecular sieve anaysis showed core and sigma to have greater affinity for each other in 50% glycerol than in 10% glycerol. The presence of 10% glycerol in the assay buffer increased the activity of the enzyme. The effect of various DNA templates on the conformations of core, holoenzyme, alpha 2 beta subassembly, and beta' subunit was also monitored by far-ultraviolet circular dichroism. All the protein samples showed between 10 and 20% decrease in secondary structure upon the addition of the DNA.[Abstract] [Full Text] [Related] [New Search]