These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Body fluid homeostasis in man. A contemporary overview.
    Author: Skorecki KL, Brenner BM.
    Journal: Am J Med; 1981 Jan; 70(1):77-88. PubMed ID: 7006395.
    Abstract:
    In the steady state, urinary excretion of sodium is closely matched to dietary salt intake. Given rigorous defense of extracellular fluid osmolality, it is the quantity of sodium in the extracellular fluid that determines the volume of this compartment. Changes in extracellular fluid volume are detected by volume sensors located in the intrathoracic vascular bed, kidney and other organs. These mechanoreceptors gauge the adequacy of intravascular volume, relative to capacitance, at various sites within the circulation. The perception of a change in the normal relationship between intravascular volume and circulatory capacity evokes a host of renal effector mechanisms that lead ultimately to physiologically appropriate changes in urinary sodium excretion. These effector mechanisms involve physical adjustments in the glomerular filtration rate, renal microvascular hemodynamics and peritubular capillary Starling forces, tubule fluid composition, flow rate and transtubular ion gradients. Neural and humoral pathways are also involved and, among the latter, angiotensin II, aldosterone, prostaglandins and kinins have been studied extensively. The continuous interaction between these sensor and effector mechanisms serves to ensure near-constancy of the extracellular fluid volume, a condition essential for optimal circulatory performance.
    [Abstract] [Full Text] [Related] [New Search]