These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acetoacetyl-CoA reductase activity of lactating bovine mammary fatty acid synthase.
    Author: Dodds PF, Guzman MG, Chalberg SC, Anderson GJ, Kumar S.
    Journal: J Biol Chem; 1981 Jun 25; 256(12):6282-90. PubMed ID: 7016867.
    Abstract:
    Fatty acid synthase, purified from lactating bovine mammary gland, utilizes coenzyme A esters of acetoacetic, 3-hydroxybutyric, and crotonic acids as substrates for its partial reactions at micromolar concentrations. The NADPH:acetoacetyl-CoA reductase had a Km of 5 microM acetoacetyl-CoA and a Vmax of about 4 mumol of NADPH oxidized min-1 mg-1. In contrast, the Km for the model compound, acetoacetyl pantetheine was 820 microM and that of S-acetoacetyl-N-acetylcysteamine was over 40 mM. The reduction of acetoacetyl-CoA was observed with the enzyme from rat tissues also but not with those from avian tissues or yeast. With the bovine mammary enzyme, the reaction was found to oxidize 2 mol of NADPH for every mol of acetoacetyl-CoA consumed. Butyrate was the major product of reduction. The reductase activity was susceptible to inhibition by several sulfhydryl reagents; it was lost when the synthase was dissociated into one-half molecular weight subunits or when the incubation mixture was depleted of CoA. It was competitively inhibited by acetyl-CoA, butyryl-CoA, methylmalonyl-CoA, and 2-methylcrotonyl-CoA. These results as well as its use as a primer in fatty acid synthesis by the enzyme suggest that the acetoacetyl group from acetoacetyl-CoA is transferred to the enzyme, presumably to its 4'-phosphopantheine prosthetic group. The acyl group is then expected to remain attached to the enzyme while it is reduced, dehydrated, and reduced again to form a butyryl group which can either undergo chain elongation, if malonyl-CoA is present, or be released from the enzyme by hydrolysis or transfer to free CoA.
    [Abstract] [Full Text] [Related] [New Search]