These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence that a Na+/Ca2+ antiport system regulates murine erythroleukemia cell differentiation. Author: Smith RL, Macara IG, Levenson R, Housman D, Cantley L. Journal: J Biol Chem; 1982 Jan 25; 257(2):773-80. PubMed ID: 7054181. Abstract: The Na+ and Ca2+ transport properties of cultured murine erythroleukemia (MEL) cells have been investigated. We have previously shown that amiloride prevents dimethyl sulfoxide-induced MEL cell differentiation via inhibition of an essential Ca2+ influx (levenson, R., Housman, D., and Cantley, L. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5948-5952). Here we show that external Na+ inhibits Ca2+ influx and stimulates Ca2+ efflux from uninduced MEL cells. Increasing the internal Na+ concentration by a brief incubation of cells with ouabain stimulates the rate of 45Ca2+ influx. Amiloride (40 microM) completely blocks the external Na+-stimulated 45Ca2+ efflux and external Na+-inhibitable 45Ca2+ influx. The same concentration of amiloride had no significant effect on net Na+ uptake. These results suggest that a significant fraction of Ca2+ flux across the MEL cell plasma membrane occurs via a Na+/Ca2+ antiport system and that amiloride prevents differentiation by blocking Ca2+ influx through this system. The importance of a Na+/Ca2+ antiport system for MEL cell differentiation is supported by the following observation: increasing the cellular Na+ level by a brief treatment with ouabain plus monensin accelerates MEL cell commitment as effectively as adding the Ca2+ ionophore A23187. We suggest that dimethyl sulfoxide induces MEL cell differentiation by inhibiting the Na+ pump and consequently allowing Ca2+ influx through the Na+/Ca2+ antiport.[Abstract] [Full Text] [Related] [New Search]