These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Crosslinking and photoreaction of ozone-oxidized calf-lens alpha-crystallin. Author: Fujimori E. Journal: Invest Ophthalmol Vis Sci; 1982 Mar; 22(3):402-5. PubMed ID: 7061212. Abstract: Direct-photo-oxidation, singlet oxygen-oxidation, or photosensitized oxidation can modify lens crystallins, causing an increase in blue fluorescence and covalent crosslinking. A relationship between these changes has not been elucidated. We now report results from experiments with ozone oxidation. When calf-lens alpha-crystallin is treated with zone oxidation. When calf-lens alpha-crystallin is treated with ozone, new absorption, fluorescence, and phosphorescence, which are characteristic of the oxidized product of tryptophan (N-formylkynurenine), appear at 320, 435, and 445 nm, respectively. In addition, in this ozonization of alpha-crystallin, its polypeptides are crosslinked by nondisulfide bonds. Irradiation of ozone-treated alpha-crystallin with near-ultraviolet (365 nm) light increases crosslinking and reduces the 320 nm absorbance with a concomitant appearance of a new absorption at about 420 nm. This photoproduct exhibits an intense fluorescence around 450 nm and a weak phosphorescence at 510 nm, with excitation peaks at 400, 415, and 422 nm. These findings are essentially the same as those observed in photo-oxidized alpha-crystallin, suggesting the involvement of the same tryptophan oxidized product in the modification of the lens protein.[Abstract] [Full Text] [Related] [New Search]