These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of fibronectin in collagen deposition: Fab' to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. Author: McDonald JA, Kelley DG, Broekelmann TJ. Journal: J Cell Biol; 1982 Feb; 92(2):485-92. PubMed ID: 7061591. Abstract: We report the effect of Fab' (anti-60k) to a 60,000 mol wt gelatin binding domain of fibronectin (1981, J. Biol. Chem. 256:5583) on diploid fibroblast (IMR-90) extracellular fibronectin and collagen organization. Anti-60k Fab' did not inhibit IMR-90 attachment or proliferation in fibronectin-depleted medium. Fibroblasts cultured with preimmune Fab' deposited a dense extracellular network of fibronectin and collagen detectable by immunofluorescence, while anti-60k Fab' prevented extracellular collagen and fibronectin fibril deposition. Matrix fibronectin and collagen deposition remained decreased in cultures containing anti-60k Fab' until cells became bilayered or more dense, when fibronectin and collagen began to appear in lower cell layers. Anti-60k Fab' added to confluent cultures 24 h before fixation and staining had no effect on matrix fibronectin or collagen, so anti-60k Fab' did not simply block immunostaining. Confluent cultures grown in anti-60k Fab' and labeled for 24 h with [3H]proline incorporated identical amounts of [3H]proline and [3H]hydroxyproline, but [3H]hydroxyproline deposition in the cell layer was significantly decreased by anti-60k Fab' (P less than 0.01). Extracellular matrix collagen does not appear to form a scaffold for fibronectin deposition, as neither gelatin nor a gelatin-binding fragment of plasma fibronectin inhibited deposition of matrix fibronectin. Our results suggest that interstitial collagens and fibronectin interact to form a fibrillar component of the extracellular matrix, and that fibronectin is required for normal collagen organization and deposition by fibroblasts in vitro. Domain-specific antibodies to fibronectin are powerful tools to study the biological role of fibronectin in extracellular matrix organization and other processes.[Abstract] [Full Text] [Related] [New Search]