These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional organization of premotor neurons in the cat medial vestibular nucleus related to slow and fast phases of nystagmus. Author: Nakao S, Sasaki S, Schor RH, Shimazu H. Journal: Exp Brain Res; 1982; 45(3):371-85. PubMed ID: 7067772. Abstract: Extracellular spikes were recorded from secondary vestibular neurons in the cat medial vestibular nucleus (MVN) and were identified as type I or II neurons by horizontal rotation. Type I neurons were further classified as excitatory or inhibitory premotor neurons on the basis of their axonal termination in the contralateral or ipsilateral abducens nucleus, demonstrated by spike-triggered averaging of abducens nerve discharges, or by antidromic activation using systematic microstimulation within the abducens nucleus. Both excitatory and inhibitory premotor type I MVN neurons exhibited a rhythmic modulation of their firing rate in association with nystagmus elicited by rotation or electrical stimulation of the vestibular nerve. Their tonic activity during the slow phase was suppressed at the quick phase directed to the ipsilateral side. Excitatory type I MVN neurons terminating in the contralateral abducens nucleus sent collateral axons to the contralateral MVN. These commissural neurons also showed a nystagmus-related discharge pattern. Type II MVN neurons activated at short latency by stimulation of the contralateral vestibular nerve exhibited burst discharges when the activity of ipsilateral type I neurons was suppressed at the quick phase. These type II neurons made monosynaptic inhibitory connection with type I neurons as shown by the post-spike average of the membrane potential of secondary MVN neurons triggered from spikes of single type II neurons. Thus, the inhibitory action originating from burst activity of type II MVN neurons contributes to suppression of type I premotor MVN neurons during fast eye movements.[Abstract] [Full Text] [Related] [New Search]