These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reflex cardiovascular changes with veratridine in the conscious dog. Author: Barron KW, Bishop VS. Journal: Am J Physiol; 1982 May; 242(5):H810-7. PubMed ID: 7081453. Abstract: The present study was undertaken to examine the reflex responses of activation of cardiac sensory receptors in the conscious dog. Intracoronary (left circumflex coronary artery) injection of veratridine (0.10 micrograms/kg) reduced mean arterial pressure (-40 mmHg, P less than 0.05), heart rate (-34 beats/min, P less than 0.05), and maximum rate of rise of left ventricular pressure (LV dP/dtmax) (-419 mmHg/s, P less than 0.05). Bilateral cervical vagal cold block (BVB) eliminated the depressor and bradycardic responses of veratridine. BVB not only eliminated the negative inotropic response to veratridine but reversed it to a positive inotropic response (LV dP/dtmax increased 313 +/- 76 mmHg/s). Ganglionic blockade abolished all effects of veratridine. The bradycardia and negative inotropic effects caused by veratridine were attenuated by either atropine or metoprolol and completely eliminated by the combination of the two antagonists. Veratridine also produced a decrease in renal artery blood flow but had no effect on renal vascular resistance. In contrast, iliac blood flow was increased with veratridine, and this, combined with the depressor effect, resulted in a decrease in iliac vascular resistance (-37%), P less than 0.05). BVB abolished the changes in renal and iliac blood flow or resistance caused by veratridine. The results indicate that activation of cardiac receptors in the conscious dog elicits inhibitory reflexes to the heart and peripheral circulation that are mediated by vagal afferents. After vagotomy, veratridine elicited a reflex positive inotropic response, which may have resulted from activation of cardiac sympathetic afferent fibers.[Abstract] [Full Text] [Related] [New Search]