These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytochrome P-450- and flavin-containing monooxygenase-catalyzed formation of the carcinogen N-hydroxy-2-aminofluorene and its covalent binding to nuclear DNA. Author: Frederick CB, Mays JB, Ziegler DM, Guengerich FP, Kadlubar FF. Journal: Cancer Res; 1982 Jul; 42(7):2671-7. PubMed ID: 7083159. Abstract: The metabolic N-oxidation of the carcinogen 2-aminofluorene was examined in vitro using fortified hepatic microsomes from a variety of species. Rat, dog, human, and pig liver microsomes catalyzed the formation of N-hydroxy-2-aminofluorene (N-OH-AF) from AF at rates of 1.6, 1.0, 1.2, and 3.5 nmol/min/mg protein, respectively. The involvement of both cytochrome P-450 and the flavin-containing monooxygenase was demonstrated with hepatic microsomes and with purified enzymes by using specific enzyme inhibitors. 2-[(2,4-Dichloro-6-phenyl)phenoxy]ethylamine, a potent cytochrome P-450 inhibitor, decreased microsomal N-OH-AF formation by 96, 83, 70, and 46% in the rat, dog, human, and pig, respectively; and further addition of methimazole, a high-affinity flavin-containing monooxygenase substrate, abolished the residual N-hydroxylating activity. Using the purified porcine flavin-containing monooxygenase, metabolic formation of N-OH-AF occurred at a rate of 4.9 nmol/min/nmol flavin adenine nucleotide and was insensitive to 2-[(2,4-dichloro-6-phenyl)phenoxy]ethylamine inhibitor. In addition, purified rat liver cytochrome P-450 (isolated from 5,6-naphthoflavone-induced animals) N-hydroxylated AF (1.1 nmol/min/nmol P-450) and was completely inhibited by 2-[(2,4-dichloro-6-phenyl)-phenoxy]ethylamine, but the reaction was insensitive for methimazole. To determine whether or not the metabolic formation of N-OH-AF could lead directly to covalently bound adduct(s) with DNA under these incubation conditions (30 min, pH 7.5), the binding of synthetic and metabolically formed [3H]-N-OH-AF to added calf thymus DNA and to DNA in isolated rat liver nuclei was investigated. In all cases, the amount of DNA-bound carcinogen accounted for 0.08 to 0.15% of the N-OH-AF present in the incubation mixtures. These data, when compared to the levels of AF bound to hepatic nuclear DNA reported in vivo, suggest that the nonenzymatic reaction of N-OH-AF with nuclear DNA may be sufficient to account for a substantial portion of the observed in vivo binding of this carcinogen.[Abstract] [Full Text] [Related] [New Search]