These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of cadmium and copper on the renal uptake and metallothionein binding of gold in the rat and hamster.
    Author: Mogilnicka EM, Webb M.
    Journal: Chem Biol Interact; 1982 Jun; 40(2):247-56. PubMed ID: 7083395.
    Abstract:
    Rats and hamsters, (pre)-treated with copper and cadmium, were used to investigate whether species-differences in renal metallothionein synthesis in response to gold were determined by changes in the kidney concentrations of other metals. The effects of both dietary copper limitation and excess on the renal metabolism of gold also were studied in the rat. In this species, all of the pre-treatments affected the renal concentrations of total and metallothionein-bound copper, but none of them altered either the kidney uptake or thionein-binding of gold. Incorporation of zinc into the metallothionein, which accompanied the binding of gold in this fraction of the kidney, however, was influenced slightly by the pretreatments, In hamsters, pretreatment with cadmium, which increased the concentrations of total and thionein-bound zinc in the kidneys, also did not affect the renal uptake of gold, although it increased significantly the binding of gold to the metallothionein fraction of the renal cytosol. This increased binding of gold also was accompanied by further increases in the zinc and copper contents of the metallothionein; the contents of total and thionein-bound cadmium, however, remained essentially unchanged. Concentrations of copper and zinc in the hamster kidney were not affected significantly by subcutaneous administration of copper alone (five daily doses, each of 3.2 mg Cu/kg body wt.), but were increased when gold was given during the copper-treatment. The concentrations of gold, copper and zinc in the renal metallothionein fraction also were increased under these conditions. From these results it seems that kidney metallothionein synthesis in response to gold may be related to the changes in either the concentration or distribution of zinc, rather than copper.
    [Abstract] [Full Text] [Related] [New Search]