These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Response of acetylcholine receptors to photoisomerizations of bound agonist molecules.
    Author: Nass MM, Lester HA, Krouse ME.
    Journal: Biophys J; 1978 Oct; 24(1):135-60. PubMed ID: 708818.
    Abstract:
    In these experiments, agonist-induced conductance is measured while a sudden perturbation is produced at the agonist-receptor binding site. A voltage-clamped Electrophorus electroplaque is exposed to trans-Bis-Q, a potent agonist. Some channels are open; these receptors have bound agonist molecules. A light flash isomerizes 3(-35)% of the trans-Bis-Q molecules to their cis form, a far poorer agonist. This causes a rapid decrease of membrane conductance (phase 1), followed by a slower increase (phase 2). Phase 1 has the amplitude and wavelength dependence expected if the channel closes within 100 mus after a single bound trans-Bis-Q is isomerized, and if the photochemistry of bound Bis-Q resembles that in solution. Therefore, the receptor channel responds rapidly, and with a hundred-fold greater closing rate, after this change in the structure of a bound ligand. Phase 2 (the conductance increase) seems to represent the relaxation back toward equilibrium after phase 1, because (a) phase 2 has the same time constant (1(-5) ms) as a voltage- or concentration-jump relaxation under identical conditions; and (b) phase 2 is smaller if the flash has led to a net decrease in (trans-Bis-Q). Still slower signals follow: phase 3, a decrease of conductance (time constant 5(-10 ms); and phase 4, an equal and opposite increase (several seconds). Phase 3 is abolished by curare and does not depend on the history of the membrane voltage. We consider several mechanisms for phases 3 and 4.
    [Abstract] [Full Text] [Related] [New Search]