These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Water reabsorption by papillary collecting ducts in the remnant kidney.
    Author: Pennell JP, Bourgoignie JJ.
    Journal: Am J Physiol; 1982 Jun; 242(6):F657-63. PubMed ID: 7091319.
    Abstract:
    Water transport by terminal papillary collecting ducts was examined by micropuncture of the renal papilla in 15 rats with a solitary remnant kidney (RK) and in 27 normal rats, 10 of which had undergone sham operation. Before papillary exposure, urinary osmolality was significantly (P less than 0.001) lower in RK rats (685 vs. 1,722 mosmol/kg H2O in normal rats). After papillary exposure, urinary osmolality decreased by 50% in normal rats but did not change in RK rats. In RK rats, a greater percentage of filtered water was delivered to (5.74% vs. 2.29% in normal rats, P less than 0.001) and reabsorbed by (1.94% vs. 0.94% in normal rats, P less than 0.005) the terminal millimeter of papillary collecting ducts. Fractional water reabsorption by terminal papillary collecting ducts correlated directly (r = 0.83, P less than 0.001) with fractional water delivery, suggesting load dependence of water reabsorption. Estimated absolute water reabsorption by terminal collecting ducts was equivalent for remnant and normal kidneys and increased two-to fourfold in remnant kidneys when analyzed per functioning papillary collecting duct. There was an inverse relationship between urinary osmolality and fractional water delivery to papillary collecting ducts (r = 0.65, P less than 0.001). Although the data do not exclude functional alterations of papillary collecting ducts, the events underlying the reduction of urinary osmolality in remnant kidneys appear to involve physiological processes based on a high delivery and reabsorption of water.
    [Abstract] [Full Text] [Related] [New Search]