These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Visual receptive field properties of cells innervated through the corpus callosum in the cat. Author: Lepore F, Guillemot JP. Journal: Exp Brain Res; 1982; 46(3):413-24. PubMed ID: 7095047. Abstract: The present experiment examined the receptive field (R.F.) properties of cortical cells which receive part of their input from the contralateral hemisphere via the corpus callosum. Two groups of cats were used to recording unit activity: a normal control group, and an experimental group consisting of cats which had their optic chiasmas split across the midline prior to the recording sessions. Acute recordings were carried out in the conventional manner using tungsten microelectrodes and N2O: O2 anaesthesia. The recording site was the 17-18 border. The stimulus consisted of a thin bar generated on an oscilloscope screen by a computer. The bar, whose orientation was varied automatically from 0 degrees to 345 degrees in 15 degrees steps, was swept across the screen at constant speed orthogonal to the orientation. Various R.F. properties were studied using both quantitative and qualitative criteria. Thus, in the normal cat, simple, complex and hypercomplex type R.F.'s were found, whereas no callosally activated cell was of the simple type. The ocular dominance distribution found in the split chiasma cat was skewed towards the ipsilateral eye, although a fairly large number of cells could be driven with the two eyes. The R.F.'s of the callosally activated neurons were all situated close to the vertical neurons were all situated close to the vertical meridian, which they sometimes straddled. Both in the normal and in the chiasma sectioned cats, the complex cells had larger R.F.'s than the other cell types. However, the R.F.'s determined through the ipsilateral eye was essentially of the same dimensions as those obtained through the indirect interhemispheric pathway, and this irrespective of cell type. Orientation specificity was similar for the two eyes in the split chiasma cats as it was for the normal cats although in the former the orientation tuning curve was narrower for the callosal pathway than for the more direct thalamo-cortical pathway. The results are interpreted within the context of the different functions ascribed to the corpus callosum in vision.[Abstract] [Full Text] [Related] [New Search]