These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interactions of tubulin and microtubule-associated proteins. Conformation and stability of the oligomeric species from glycerol-cycled microtubule protein of bovine brain.
    Author: Martin SR, Clark DC, Mayley PM.
    Journal: Biochem J; 1982 Jun 01; 203(3):643-52. PubMed ID: 7115306.
    Abstract:
    1. The conformation of bovine microtubule protein prepared by cycles of assembly and disassembly in the presence of glycerol has been studied by near-u.v. circular dichroism (c.d.) over a range of protein concentrations. The effects on the conformational properties of ionic strength and of a pH range from 6 to 7.5 have been correlated with the known oligomeric composition of microtubule protein preparations, as determined by the sedimentation behaviour of this preparation [Bayley, Charlwood, Clark & Martin (1982) Eur. J. Biochem.121, 579-585]. 2. The formation of 30S oligomeric ring species, either by decreasing ionic strength at pH6.5 or by changing pH in the presence of 0.1m-NaCl, correlates with a significant change in tubulin c.d. Formation of 18S oligomer by changing pH at ionic strength 0.2 produced no comparable effect. The c.d. of tubulin dimer itself is not affected by ionic strength and pH over the same range. 3. The results are interpreted as a small conformational adjustment between tubulin and specific microtubule-associated proteins on forming 30S oligomeric species, due to interaction with the high-molecular-weight-group proteins. The possible significance of this is discussed with respect to microtubule assembly in vitro. 4. By using this conformational parameter, together with equilibrium and kinetic light-scattering studies, the sensitivity of glycerol-cycled microtubule protein to dilution is shown to be strongly pH-dependent, the oligomers being much more stable at pH6.4 than at pH6.9. 5. Oligomeric complexes of tubulin with microtubule-associated proteins show marked stability under conditions similar to those for efficient microtubule assembly in vitro. Oligomeric material therefore must be incorporated directly during assembly in vitro from microtubule protein.
    [Abstract] [Full Text] [Related] [New Search]