These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hybrid biosynthesis of derivatives of protylonolide and M-4365 by macrolide-producing microorganisms.
    Author: Sadakane N, Tanaka Y, Omura S.
    Journal: J Antibiot (Tokyo); 1982 Jun; 35(6):680-7. PubMed ID: 7118724.
    Abstract:
    Biotransformation of a macrolide antibiotic and a related compound was studied using various macrolide-producing microorganisms grown in the presence of cerulenin, an inhibitor of de novo synthesis of the aglycone moiety. Protylonolide (1) was transformed into 5-O-(4'-O-propionylmycarosyl)protylonolide (2) by a leucomycin-producing strain, Streptoverticillium kitasatoensis KA-429. M-4365 G2 (3) was bioconverted into M-4365 G3 (4), 9-dihydro M-4365 G3 (5), 3-O-acetyl M-4365 G3 (6) and 3-O-acetyl-9-dihydro M-4365 G3 (7) by a spiramycin-producing strain, Streptomyces ambofaciens KA-1028. Forosaminylated derivatives of M-4365 G2 were not obtained using this microorganism. M-4365 G2 was converted into 3-O-acetyl M-4365 G2 (8) by Stv. kitasatoensis strain KA-429 and a carbomycin-producing strain, S. thermotolerans KA-442. These results suggest that the substrate specificity of mycaminose- and forosamine-binding enzymes is high in Stv. kitasatoensis and S. ambofaciens, respectively, while that of the 3-hydroxyl acylating enzyme and mycarose-binding enzyme is low in these microorganisms. The bioconversion products showed lower antibacterial and antimycoplasmal activities than those of M-4365 G2.
    [Abstract] [Full Text] [Related] [New Search]