These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of extracellular calcium ions, verapamil, and lanthanum on active and passive properties of canine cardiac purkinje fibers.
    Author: Pressler ML, Elharrar V, Bailey JC.
    Journal: Circ Res; 1982 Nov; 51(5):637-51. PubMed ID: 7139882.
    Abstract:
    The effects of alteration of extracellular calcium ion concentration ([Ca++]o) were studied in isolated false tendons using microelectrode techniques. Several determinants of cellular excitability and conduction velocity were affected by extracellular calcium. Increasing [Ca++]o from 2 to 8 mM resulted in: (1) a progressive decrease in interelectrode conduction velocity (2) a 7-mV shift of the maximum upstroke velocity-membrane potential relation toward less negative potential, (3) an increase in rheobasic current, (4) a 14-mV shift of the voltage threshold for all-or-none depolarization to less negative potentials, (5) a 52% increase in internal longitudinal resistance per unit length, and (6) a 27% decrease in the capacitance filled by the foot of the action potential from 4.90 to 3.56 microF/cm2. Blockade of the slow inward current by Mn++ or verapamil did not alter the [Ca++]o-induced effects on the maximum upstroke velocity-membrane potential relation. Cable properties were determined during alteration of [Ca++]o in the presence of verapamil (3 X 10(-6) and 1 X 10(-5) M) or in the presence of La+++ (0.2 mM). Verapamil increased membrane resistance X unit length but did not affect internal longitudinal resistance per unit length. La+++ had no effects on either membrane resistance X unit length or internal longitudinal resistance per unit length. Verapamil did not block the increase in ri induced by elevation of [Ca++]o. However, no change in ri occurred during an increase of [Ca++]o when La+++ was present. The results suggest that [Ca++]o-induced changes in internal longitudinal resistance may occur by the influx of calcium ions through the Na+/Ca++ exchange mechanism.
    [Abstract] [Full Text] [Related] [New Search]