These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Further characterization of the growth inhibitory effect of rotenone on in vitro cultured Ehrlich ascites tumour cells.
    Author: Löffer M, Schneider F.
    Journal: Mol Cell Biochem; 1982 Oct 18; 48(2):77-90. PubMed ID: 7144746.
    Abstract:
    As an approach for a better understanding of the mode of action of rotenone on mammalian cells we have studied the proliferation properties, metabolism and basic cell composition of Ehrlich ascites tumour cells cultured in vitro in the presence of 2.5 microM rotenone and after removal of the inhibitor. Experiments on asynchronous cells showed a rapid cessation of cell division accompanied by increased glycolytic rate, reduced oxygen consumption, moderate increase in DNA content and a fair increase in protein and RNA content of the cultures. DNA histograms obtained by flow-cytometry revealed an accumulation of cells in the G2 and M phase of the cell cycle. Electron micrographs taken after a 24 h treatment of cells illustrated the formation of giant mitochondria and fragmented nuclei. In order to elucidate the dual effect of rotenone- inhibition of mitochondrial energy metabolism and of mitotic processes- the influence on cells of rotenone at different stages of the cell cycle was tested using Ehrlich ascites tumour cells enriched in G1, S and G2 by centrifugal elutriation. DNA histograms and [3H]thymidine labelling index curves of cells from the different fractions cultured in the presence of 2,5 microM rotenone indicated that in addition to the observed accumulation in G2 and mitotic arrest of cells, the cell cycle progression is delayed in G1 phase. This may be explained by an effect of the inhibitor on the respiratory chain. S phase cells seemed to continue the cycle for several hours at a rate comparable to that of controls. Recultivation experiments on rotenone-treated asynchronous cells in inhibitor-free medium confirmed that some cells reinitiate DNA synthesis without preceeding cell division. Thus it must be concluded that cells at all stages of the cycle are affected by rotenone, but the impairment of cellular metabolism becomes manifest and lethal as soon as the acute block at mitosis is abolished and cells reenter the cycle.
    [Abstract] [Full Text] [Related] [New Search]