These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of the noradrenaline neurotoxin DSP4 on the postnatal development of central noradrenaline neurons in the rat.
    Author: Jonsson G, Hallman H, Sundström E.
    Journal: Neuroscience; 1982; 7(11):2895-907. PubMed ID: 7155358.
    Abstract:
    The effect of the noradrenaline neurotoxin DSP4 on the postnatal development of central noradrenergic neurons in the rat has been investigated using neurochemical techniques. The results demonstrated a preferential effect of DSP4 on the locus coeruleus noradrenergic neuron system without any notable effects on the dopamine and adrenaline neurons and only a minor neurotoxic effect on the serotonin neurons. The effect of DSP4 on the serotonin neurons could be completely prevented by pretreatment with the uptake blocker zimelidine, without affecting the action of DSP4 on noradrenergic neurons. Neonatal DSP4 treatment systemically led to permanent depletions of noradrenaline in the cerebral cortex and spinal cord and marked increases of noradrenaline in the cerebellum and pons-medulla. These effects of DSP4 were dose-dependent and could be blocked by pretreatment with the noradrenaline uptake blocker desipramine. The alterations in endogenous noradrenaline levels were quantitatively similar to changes observed in [3H]noradrenaline uptake in slices in vitro. There were no significant changes of these noradrenergic parameters when analysing the whole CNS after neonatal DSP4 treatment, in spite of marked regional changes in both directions. Administration of DSP4 to rats of different ages produced acutely marked depletions of noradrenaline in all regions including the pons-medulla and the cerebellum at all developmental stages. Marked and permanent depletions of noradrenaline were found in the distant noradrenergic nerve terminal projections after treatment at all ages, whereas increases in noradrenaline levels in the pons-medulla and cerebellum were only observed in rats treated with DSP4 up to the age of 3-5 days, whereas a DSP4 administration in older rats led to substantial and permanent depletions of noradrenaline in both these regions. The results indicate that the alteration of the postnatal development of noradrenergic neurons after treatment of rats up to the age of 3-5 days is mainly related to a 'pruning effect' of DSP4, in which prevention of the development of distant nerve terminal projections causes an increased outgrowth of nerves in collateral systems spared by the neurotoxin. The results indicate that DSP4 may be a useful denervation tool for studying various aspects of noradrenergic neurotransmission of developing locus coeruleus neurons.
    [Abstract] [Full Text] [Related] [New Search]