These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 1H-NMR study of the location and motion of ubiquinones in perdeuterated phosphatidylcholine bilayers.
    Author: Kingsley PB, Feigenson GW.
    Journal: Biochim Biophys Acta; 1981 May 13; 635(3):602-18. PubMed ID: 7236678.
    Abstract:
    Ubiquinones (n = 1,2,3,4,7,9,10) and ubiquinols (n = 1,2,3,4,10) were incorporated into ordinary (protonated) or perdeuterated dimyristoyl phosphatidylcholine vesicles and were found to have significant local molecular motion. The motion of the quinone ring, as judged from the linewidth of the OCH3 proton resonances, decreased in longer-chain ubiquinones. Minimum values for the transverse mobility (flip-flop rates) of ubiquinones-1,2,3,4,10, measured with the aid of lanthanide shift reagents, suggest that they are all able to function in a protonmotive 'Q cycle' during electron transport. As the length of the side chain increases beyond 1 isoprenoid unit, the quinone/quinol ring tends to be deeper in the outer monolayer of small sonicated vesicles and in both monolayers of larger freeze-thaw vesicles, but little or no change in depth is observed in the inner monolayer of small vesicles. The ubiquinol rings are closer to the membrane surface than are the ubiquinone rings. For side chain n = 9 or 10, a second resonance from the OCH3 protons of ubiquinones and ubiquinols in vesicles appears in the 2H-NMR spectrum. This is due to the presence of two types of vesicles with different ubiquinone/phospholipid ratios.
    [Abstract] [Full Text] [Related] [New Search]