These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of spermine as an inhibitor of erythropoiesis in patients with chronic renal failure.
    Author: Radtke HW, Rege AB, LaMarche MB, Bartos D, Bartos F, Campbell RA, Fisher JW.
    Journal: J Clin Invest; 1981 Jun; 67(6):1623-9. PubMed ID: 7240411.
    Abstract:
    Fetal mouse liver and normal human bone marrow cell cultures were used for studies on the inhibition of erythroid colony formation (CFU-E) by sera from anemic patients with end-stage renal failure and the polyamine spermine. Sera from each of eight predialysis uremic anemic patients with end-stage renal failure produced a significant (P < 0.001) inhibition of erythroid colony formation in the fetal mouse liver cell cultures when compared to sera from normal human volunteers. In vivo or in vitro dialysis of the uremic sera with a 3,500-dalton exclusion limit membrane removed the inhibitor from uremic sera. The uremic serum dialysate provided by the membrane fractionation was significantly inhibitory in the erythroid cell cultures. When this dialysate was applied to gel filtration chromatography (Bio-Gel P-2) the inhibitor was found to be in the same molecular weight range as [(14)C]spermine. The polyamine spermine produced a dose-related inhibition of erythroid colony formation (CFU-E) in fetal mouse liver and normal human bone marrow cultures. Thus, the following evidence is provided that the in vitro inhibitor of erythropoiesis found in chronic renal failure patients' sera is identical with the polyamine spermine: (a) the inhibitor and radiolabeled spermine appeared in identical Bio-Gel P-2 effluent fractions; (b) when spermine was added to normal human sera at concentrations reported in sera of uremic patients, and studied in both the fetal mouse liver cell culture and normal human bone marrow cultures, a dose-related inhibition of erythroid colony (CFU-E) formation was noted; and (c) the inhibitory effects of crude uremic serum, uremic serum dialysate, and fractions of uremic serum dialysate from a Bio-Gel column, on erythroid colony formation were completely abolished by the addition of a specific rabbit antiserum to spermine.
    [Abstract] [Full Text] [Related] [New Search]