These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of modulation of microsomal epoxide hydrolase activity on microsome-catalyzed activation of benzo[alpha]pyrene and its covalent binding to DNA. Author: Guenthner TM, Oesch F. Journal: Cancer Lett; 1981 Jan; 11(3):175-83. PubMed ID: 7248922. Abstract: The effects of modulation of microsomal epoxide hydrolase activity on the binding of calf thymus DNA of benzo[alpha]pyrene metabolically activated by rat liver microsomes were investigated. In systems where microsomal epoxide hydrolase levels were not manipulated, 2 major bound species, one derived from 9-hydroxybenzo[alpha]pyrene and the other derived from benzo[alpha]pyrene 7,8-dihydrodiol, were found in approximately equivalent amounts. When epoxide hydrolase levels were increased, either by addition in vitro of purified enzyme or by induction in vivo by trans-stilbene oxide, the binding of the benzo[alpha]pyrene 7,8-dihydrodiol product was increased, while the binding of the 9-hydroxybenzo[alpha]pyrene product was practically eliminated. When microsomal epoxide hydrolase activity was decreased by selective inhibition with low concentrations of 1,1,1-trichloropropene 2,3-oxide, the binding of the species derived from 9-hydroxybenzo[alpha]pyrene was increased several-fold, while that of the species derived from benzo[alpha]pyrene 7,8-dihydrodiol was greatly decreased. The results indicate that the binding species derived from 9-hydroxybenzo[alpha]pyrene is formed through a metabolic pathway leading to an epoxide which is a substrate of microsomal epoxide hydrolase and that microsomal epoxide hydrolase is important in regulating the pattern of binding of individual microsomally-formed benzo[alpha]pyrene metabolites to DNA.[Abstract] [Full Text] [Related] [New Search]